401 research outputs found

    Holographic spin liquids and Lovelock Chern-Simons gravity

    Get PDF
    We explore the role of torsion as source of spin current in strongly interacting conformal fluids using holography. We establish the constitutive relations of the basic hydrodynamic variables, the energy-momentum tensor and the spin current based on the classification of the spin sources in irreducible Lorentz representations. The fluids we consider are assumed to be described by the five dimensional Lovelock-Chern-Simons gravity with independent vielbein and spin connection. We construct a hydrodynamic expansion that involves the stress tensor and the spin current and compute the corresponding one-point functions holographically. As a byproduct we find a class of interesting analytic solutions to the Lovelock-Chern-Simons gravity, including blackholes, by mapping the equations of motion into non-linear algebraic constraints for the sources. We also derive a Lee-Wald entropy formula for these blackholes in Chern-Simons theories with torsion. The blackhole solutions determine the thermodynamic potentials and the hydrodynamic constitutive relations in the corresponding fluid on the boundary. We observe novel spin induced transport in these holographic models: a dynamical version of the Barnett effect where vorticity generates a spin current and anomalous vortical transport transverse to a vector-like spin source.Comment: 52 page

    Instability and Degeneracy in the BMN Correspondence

    Full text link
    Non-degenerate perturbation theory, which was used to calculate the scale dimension of operators on the gauge theory side of the correspondence, breaks down when effects of triple trace operators are included. We interpret this as an instability of excited single-string states in the dual string theory for decay into the continuum of degenerate 3-string states. We apply time-dependent perturbation theory to calculate the decay widths from gauge theory. These widths are new gauge theory data which can be compared with future calculations in light cone string field theory.Comment: 23 pages, no figure

    The holographic quantum effective potential at finite temperature and density

    Full text link
    We develop a formalism that allows the computation of the quantum effective potential of a scalar order parameter in a class of holographic theories at finite temperature and charge density. The effective potential is a valuable tool for studying the ground state of the theory, symmetry breaking patterns and phase transitions. We derive general formulae for the effective potential and apply them to determine the phase transition temperature and density in the scaling region.Comment: 27 page

    Predictions for PP-wave string amplitudes from perturbative SYM

    Get PDF
    The role of general two-impurity multi-trace operators in the BMN correspondence is explored. Surprisingly, the anomalous dimensions of all two-impurity multi-trace BMN operators to order g_2^2\lambda' are completely determined in terms of single-trace anomalous dimensions. This is due to suppression of connected field theory diagrams in the BMN limit and this fact has important implications for some string theory processes on the PP-wave background. We also make gauge theory predictions for the matrix elements of the light-cone string field theory Hamiltonian in the two string-two string and one string-three string sectors.Comment: 46 pages, 12 figures. V3:typos correcte

    Deconfinement and Thermodynamics in 5D Holographic Models of QCD

    Full text link
    We review 5D holographic approaches to finite temperature QCD. Thermodynamic properties of the "hard-wall" and the "soft-wall" models are derived. Various non-realistic features in these models are cured by the set-up of improved holographic QCD, that we review here.Comment: Invited review paper for Mod. Phys. Let

    Holography and Thermodynamics of 5D Dilaton-gravity

    Full text link
    The asymptotically-logarithmically-AdS black-hole solutions of 5D dilaton gravity with a monotonic dilaton potential are analyzed in detail. Such theories are holographically very close to pure Yang-Mills theory in four dimensions. The existence and uniqueness of black-hole solutions is shown. It is also shown that a Hawking-Page transition exists at finite temperature if and only if the potential corresponds to a confining theory. The physics of the transition matches in detail with that of deconfinement of the Yang-Mills theory. The high-temperature phase asymptotes to a free gluon gas at high temperature matching the expected behavior from asymptotic freedom. The thermal gluon condensate is calculated and shown to be crucial for the existence of a non-trivial deconfining transition. The condensate of the topological charge is shown to vanish in the deconfined phase.Comment: LaTeX, 61 pages (main body) + 58 pages (appendix), 25 eps figures. Revised version, published in JHEP. Two equations added in Section 7.4; typos corrected; references adde

    Holographic Conformal Window - A Bottom Up Approach

    Full text link
    We propose a five-dimensional framework for modeling the background geometry associated to ordinary Yang-Mills (YM) as well as to nonsupersymmetric gauge theories possessing an infrared fixed point with fermions in various representations of the underlying gauge group. The model is based on the improved holographic approach, on the string theory side, and on the conjectured all-orders beta function for the gauge theory one. We first analyze the YM gauge theory. We then investigate the effects of adding flavors and show that, in the holographic description of the conformal window, the geometry becomes AdS when approaching the ultraviolet and the infrared regimes. As the number of flavors increases within the conformal window we observe that the geometry becomes more and more of AdS type over the entire energy range.Comment: 20 Pages, 3 Figures. v2: references adde
    corecore